Grenzwerte von Funktionen für x gegen plus/minus Unendlich berechnen

Ich bin Giuliano und ich möchte dir heute zeigen, wie man mithilfe der Termumformung die Grenzwerte von Funktionen für x gegen plus oder minus unendlich berechnet. Dazu wiederholen wir zuerst, was die Testeinsetzung ist. Dann werde ich dir an einem Beispiel die Termumformung zeigen. Und dann zum Schluss noch zwei weitere Beispiele zur Termumformung, ja, durchrechnen.

Testeinsetzung

Bei der Testeinsetzung hat man zu Beginn eine Funktion, natürlich, gegeben. Und man gibt den sogenannten Definitionsbereich an. Ich kürze jetzt Funktion durch Fkt. ab. Also Funktion und den Definitionsbereich, hier mit einem Doppelstrich, weil es sich dabei um eine Menge handelt. Also Definitionsmenge/Definitionsbereich ist dasselbe.

Als Zweites haben wir dann eine Tabelle aufgestellt, beziehungsweise Testeinsetzungen gemacht, um herauszufinden, wie sich die Funktion für x gegen unendlich oder x gegen minus unendlich verhält. Und dann, als Drittes, hat man dann den Grenzwert, den ich jetzt mit GW abkürze, getippt. Und dabei tritt eben folgendes Problem auf: Diese Testeinsetzung ist nicht exakt!

Wenn wir zum Beispiel einen Grenzwert g, den nenne ich jetzt klein g, von 2,007 zum Beispiel haben oder einen Grenzwert von 0,3245.. und so weiter, also das zum Beispiel eine irrationale Zahl ist, dann kann das eigentlich durch die Testeinsetzung gar nicht genau gegeben werden. Deswegen üben wir jetzt zusammen die Termumformung.

Termumformung am Beispiel

Und die möchte ich dir jetzt anhand eines Beispiels zeigen. Wir nehmen dafür folgende Funktion: f(x) gleich 4x plus 1, geteilt durch x. Das ist eine gebrochenrationale Funktion. Und der Definitionsbereich dieser Funktion sind die reellen Zahlen ohne die Null, weil der Nenner nicht null werden darf. Das heißt, wir haben hier eine Definitionslücke.

Lesen Sie auch: Hilfe bei Angst

Das, was wir jetzt also machen wollen, ist, den Grenzwert angeben. Limes x gegen plus unendlich von dieser Funktion 4x plus 1, durch x. Das ist also jetzt das Erste, was wir uns notieren. Und der Trick ist jetzt folgender: Wir werden hier diesen Bruch einfach umformen. Das heißt, wir können hier auch schreiben: Limes x gegen plus unendlich, indem wir diesen Bruch aufteilen. Und zwar können wir das einmal in 4x durch x, plus 1 durch x zerlegen.

Wenn wir das weiterführen, gibt das Limes x gegen plus unendlich, hier können wir das x miteinander kürzen. Das heißt, hier steht eine 4 plus 1, durch x. Und nun kommt etwas, was du schon weißt. Und zwar, jetzt benutzen wir hier die Grenzwertsätze. Und zwar haben wir hier eine Summe. Und hier können wir den Grenzwert von den einzelnen Summanden berechnen. Das heißt, Limes x gegen plus unendlich von 4, plus Limes x gegen plus unendlich von 1 durch x.

Wenn ich hier, in dem zweiten Term, für x eine ganz, ganz große Zahl einsetze, wird insgesamt dieser Bruch annähernd null. Das heißt, hier haben wir insgesamt 4 plus 0. Weil hier taucht gar kein x auf, das bleibt konstant 4, egal, wie groß das x wird. Das heißt, insgesamt haben wir hier einen Grenzwert von 4 herausbekommen. Das siehst du hier jetzt auch nochmal an dem Funktionsgraphen eingezeichnet. Das heißt, diese Funktion geht für immer höhere x-Werte, nähert sich diese Funktion der sogenannten Asymptote y = 4 an.

Diese Vorgehensweise werde ich jetzt einmal hier mit dir zusammen aufschreiben. Also, das heißt, wir stellen die Testeinsetzung gegenüber der Termumformung. So: Termumformung, und zwar haben wir als Erstes, genauso wie drüben, die Funktion und den Definitionsbereich, geben wir an. Als Zweites werden wir, genauso wie hier, werden wir den Limes plus oder minus unendlich von der Funktion bilden. Also x plus unendlich oder x gegen minus unendlich von der Funktion f(x) zum Beispiel. Als Drittes wird dann f(x) umgeformt. Also, f(x) umformen. Und als Viertes haben wir dann hier, in dem Falle hier, das schreibe ich auch noch einmal daran, GWS, die Grenzwertsätze benutzt. Und als Letztes dann eben den Grenzwert gegebenenfalls angeben.

Weitere Beispiele zur Termumformung

Jetzt möchte ich dieses Verfahren einmal mit dir an zwei Beispielen üben. Kommen wir jetzt zum ersten Beispiel, bei dem ich mit dir gern die Termumformung üben möchte. Wir nehmen die Funktion g(x) gleich x² minus 1, geteilt durch x. Als Erstes bestimmen wir den Definitionsbereich, der ist alle reellen Zahlen ohne die Null. Weil wenn ich die Null einsetze, steht im Nenner eine Null, und das darf man nicht.

Lesen Sie auch: Was tun bei einer Hai-Begegnung?

Als Zweites wähle ich hier Limes x gegen minus unendlich von x² minus 1, geteilt durch x. Jetzt kommt der dritte Schritt, in dem ich f(x) umforme. Deswegen schreibe ich hier oben einfach 3. hin. Limes x gegen minus unendlich, so. Und jetzt kann ich diesen Bruch einfach aufteilen in x² geteilt durch x, minus 1 durch x.

Jetzt mache ich im vierten Schritt, wende ich die Grenzwertsätze an. Und zwar kann ich jetzt hier einmal das x wegkürzen. Und den Limes kann ich einmal hier aufteilen zwischen diesen beiden. Das heißt, hier steht Limes x gegen minus unendlich von x, minus Limes von x gegen minus unendlich 1 geteilt durch x. Wenn ich im ersten Term für x eine minus unendlich einsetze, kommt ja auch, Vorsicht, das muss man in Anführungsstrichen schreiben, minus unendlich heraus. Ja, das ist ja eigentlich keine wirkliche Zahl. Minus Limes 1 durch x für x gegen minus unendlich, dieser Term hier, der wird eben null. Das heißt, hier, minus null.

Das heißt, insgesamt haben wir hier wirklich keinen Grenzwert! Diesen hier nennt man uneigentlichen Grenzwert. Ja, also die Funktion, sagt man, geht gegen minus unendlich. Das gucken wir uns hier noch einmal in einem Koordinatensystem an. Dort siehst du Funktion g(x), x² minus 1, durch x. Bei x = 0 ist die Definitionslücke, hier sogar eine Polstelle. Und bei x gegen minus unendlich geht die Funktion unten weg, das heißt, sie strebt gegen minus unendlich.

Jetzt, als Nächstes, gucken wir uns ein zweites Beispiel an. Kommen wir zum letzten Beispiel: h(x) gleich 3 minus x, geteilt durch 3x² minus 9x. Als Erstes geben wir wieder den Definitionsbereich an, beziehungsweise die Definitionsmenge. Das sind die reellen Zahlen ohne, welche Zahlen dürfen wir nicht einsetzen? Einmal die Null, sonst wird der Nenner null, und einmal 3. Weil 3 mal 3² ist 9. 3 mal 9 ist 27, minus 9 mal 3 ist auch 27. Deswegen darf ich die 3 nicht einsetzen.

Jetzt wählen wir den Grenzwert, den wir berechnen wollen. Ich wähle hier Limes x gegen plus unendlich von der Funktion 3 minus x, geteilt durch 3x² minus 9x. Jetzt kommt der dritte Schritt: Wir formen f(x) um, und zwar nehmen wir uns hier den Nenner vor. Limes x gegen plus unendlich, der Zähler bleibt also erst einmal unbehandelt, 3 minus x. Und hier unten klammern wir jetzt 3x aus. Und, na ja klar, was bleibt übrig? Hier bleibt ein x übrig, und hier minus 3. Und jetzt können wir diese beiden fast schon kürzen.

Lesen Sie auch: Wichtige Verhaltensregeln nach Katarakt-OP

Jetzt müssen wir nur noch ein minus 1 im Zähler oder im Nenner herauskürzen. Beziehungsweise einfach erweitern, das könnt ihr machen, wie ihr wollt. Ich nehme mir jetzt hier den Zähler. Minus 1 mal, dann dreht sich das Vorzeichen hier um, x minus 3, geteilt durch 3x mal x minus 3. Ihr könnt das alternativ auch im Nenner machen. Dann steht die minus 1 einfach im Nenner. Jetzt ist das Schöne, dass hier die x minus 3 sich herauskürzen. Das heißt, wir haben insgesamt Limes x gegen, hier habe ich ein minus geschrieben, plus unendlich, so: x gegen plus unendlich minus 1, geteilt durch 3 x.

Und der Grenzwert von diesem Ausdruck ist eben 1 geteilt durch 3x. Wenn das x also ganz groß wird, geht dieser Bruch hier gegen null! Und das Schöne ist, dass es hier völlig egal ist, ob das x gegen plus unendlich oder minus unendlich strebt. Dieser Ausdruck wird für beide eben null. Das heißt, hier kann ich überall noch ein Minus ergänzen. So, genau. Also, Limes x gegen plus oder minus unendlich von der Funktion geht eben gegen null. Das schauen wir uns jetzt in einem Koordinatensystem einmal an. Dort seht ihr die Funktion h(x) gleich 3 minus x, geteilt durch 3x² minus 9x. Und da seht ihr, dass y = 0 die Asymptote ist, an die sich die Funktion, einmal für x gegen plus unendlich, annähert, und einmal, für x gegen minus unendlich, einmal von oben an diese Asymptote annähert.

tags: #verhalten #plus #minus #unendlich #grenzwerte